OpenSSL 命令行生成Elliptic Curve (EC) algorithms(椭圆曲线算法)私钥、公钥

in #openssl7 years ago

在之前的文章中,我们介绍过secp256k1-py以及python-ecdsa

<ul> <li><a href="https://steemit.com/python/@oflyhigh/secp256k1-py" target="_blank" rel="noreferrer noopener" title="This link will take you away from hive.blog" class="external_link">secp256k1-py 安装以及命令行操作 <li><a href="https://steemit.com/python/@oflyhigh/ecdsa-secp256k1-py" target="_blank" rel="noreferrer noopener" title="This link will take you away from hive.blog" class="external_link">对比一下ecdsa与secp256k1-py从私钥生成公钥 <li><a href="https://steemit.com/python/@oflyhigh/ecdsa-signingkey-verifyingkey" target="_blank" rel="noreferrer noopener" title="This link will take you away from hive.blog" class="external_link">ecdsa学习笔记 / SigningKey、VerifyingKey以及公钥 <p dir="auto">两者都可以实现私钥、公钥的生成、签名、校验等操作。<a href="https://github.com/ludbb/secp256k1-py" target="_blank" rel="noreferrer noopener" title="This link will take you away from hive.blog" class="external_link">secp256k1-py因为是C库libsecp256k1的Python FFI(foreign function interface)绑定,所以在效率上更胜一筹。而<a href="https://github.com/warner/python-ecdsa" target="_blank" rel="noreferrer noopener" title="This link will take you away from hive.blog" class="external_link">python-ecdsa因为是纯Python实现,所以更便于阅读、理解以及修改。 <p dir="auto"><img src="https://images.hive.blog/768x0/https://steemitimages.com/DQmZqNYdBcinVjAezHo5ruiGA1Yj4e5GnGxw2wUA4pbKsbR/image.png" srcset="https://images.hive.blog/768x0/https://steemitimages.com/DQmZqNYdBcinVjAezHo5ruiGA1Yj4e5GnGxw2wUA4pbKsbR/image.png 1x, https://images.hive.blog/1536x0/https://steemitimages.com/DQmZqNYdBcinVjAezHo5ruiGA1Yj4e5GnGxw2wUA4pbKsbR/image.png 2x" /> <p dir="auto">而除了这两种方式可以进行上述bitcoin相关的这些操作以外,OpenSSL也同样可以胜任。因为OpenSSL太过于复杂,我弄了几天也只了解了一点皮毛,所以这里我讲太多细节了以免暴露自己的无知。 <h1>关于格式 <p dir="auto"><span><a href="https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations" target="_blank" rel="noreferrer noopener" title="This link will take you away from hive.blog" class="external_link">https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations <p dir="auto">在上述链接中介绍了OpenSSL Elliptic Curve (EC) algorithms(椭圆曲线算法)相关的私钥格式(EC Private Key File Formats)和公钥格式(EC Public Key File Formats),无论私钥公钥都可以表示为两种格式的文件<strong><em><code>.pem以及<strong><em><code>.der。 <p dir="auto"><strong><em><code>.pem为文本格式,可以有好多表现形式以及加密方法,<strong><em><code>.der为二进制形式。 <blockquote> <p dir="auto">A PEM file is essentially just DER data encoded using base 64 encoding rules with a header and footer added. <p dir="auto">PEM文件本质上就是DER文件使用BASE64编码后加上了头尾,这句话一阵见血啊 <h1>生成私钥 <p dir="auto">生成私钥的过程要首先生成参数文件(EC Parameters file):<br /> <code>openssl ecparam -name secp256k1 -out secp256k1.pem <p dir="auto">然后再使用这个文件作为输入生成私钥:<br /> <code>openssl ecparam -in secp256k1.pem -genkey -out secp256k1-key.pem <p dir="auto">上边两个步骤也可以简化成一步来完成<br /> <code>openssl ecparam -name secp256k1 -genkey -out secp256k1-key.pem <p dir="auto">上述命令执行后,生成含类似如下内容的文本文件: <pre><code>-----BEGIN EC PRIVATE KEY----- MHQCAQEEIO/oTB61Jef6zBanUeWXUmyHIKQE6RCKuriskrNfee3AoAcGBSuBBAAK oUQDQgAEBgmGjRWN+oZwehgqEmalK6YtMPgC/m1nkUE+YTymDp3sJ4L+VIAF7mrN gPimd79cG37U2bn41bZIjGS2qXVjUA== -----END EC PRIVATE KEY----- <p dir="auto">我们也可以通过<code>-outform DER来指定生成<strong><em><code>.der格式的文件,比如:<br /> <code>openssl ecparam -name secp256k1 -genkey -outform DER -out secp256k1-key.der<br /> 会生成包含类似如下内容的二进制文件<br /> <img src="https://images.hive.blog/768x0/https://steemitimages.com/DQmS42QVdqJ4vrzGt3pHQdb5hqwXNzxEPpS1Vd1VvLqvQUq/image.png" srcset="https://images.hive.blog/768x0/https://steemitimages.com/DQmS42QVdqJ4vrzGt3pHQdb5hqwXNzxEPpS1Vd1VvLqvQUq/image.png 1x, https://images.hive.blog/1536x0/https://steemitimages.com/DQmS42QVdqJ4vrzGt3pHQdb5hqwXNzxEPpS1Vd1VvLqvQUq/image.png 2x" /> <h1>生成公钥 <p dir="auto">有了私钥后,我们可以用下列指令来生成公钥:<br /> <code>openssl ec -in secp256k1-key.pem -pubout -out ecpubkey.pem<br /> 会生成包含类似如下内容的文本文件 <pre><code>-----BEGIN PUBLIC KEY----- MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAE1xy6i/50bcje4mrDWIGL729DDdHFtCz9 t4VCfr8KP5WyLH5+0FPB4qnwhVOrpg2CZi3UVOW44+hGqQke2eeURQ== -----END PUBLIC KEY----- <p dir="auto">当然,也可以通过-outform DER<code>来指定输出的文件格式,比如:openssl ec -in secp256k1-key.pem -pubout -outform DER -out ecpubkey.der`<br /> 会生成包含类似如下内容的二进制文件<br /> <img src="https://images.hive.blog/768x0/https://steemitimages.com/DQmds4JAFHHXYuevuGVsW2tZ3GpKKHLv5YGbUCaVocSxeiX/image.png" srcset="https://images.hive.blog/768x0/https://steemitimages.com/DQmds4JAFHHXYuevuGVsW2tZ3GpKKHLv5YGbUCaVocSxeiX/image.png 1x, https://images.hive.blog/1536x0/https://steemitimages.com/DQmds4JAFHHXYuevuGVsW2tZ3GpKKHLv5YGbUCaVocSxeiX/image.png 2x" /> <p dir="auto"><strong><em><code>-inform DER选项无法在此使用,猜测是OpenSSL无法识别二进制串使用的曲线,需验证。 <h1>其它 <p dir="auto">通过上述学习,知道了OpenSSL也可以生成secp256k1的私钥公钥。 <p dir="auto">但是OpenSSL中私钥公钥使用了不同的表示方法,让习惯于看字符串的我有点懵,接下来的文章中,我会尝试ecdsa来操作OpenSSL生成的公私钥,来验证一下他们生成出来的东西是否本质上是一样的。 <h1>参考资料及相关链接 <ul> <li><span><a href="https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations" target="_blank" rel="noreferrer noopener" title="This link will take you away from hive.blog" class="external_link">https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations <li><a href="https://steemit.com/python/@oflyhigh/secp256k1-py" target="_blank" rel="noreferrer noopener" title="This link will take you away from hive.blog" class="external_link">secp256k1-py 安装以及命令行操作 <li><a href="https://steemit.com/python/@oflyhigh/ecdsa-secp256k1-py" target="_blank" rel="noreferrer noopener" title="This link will take you away from hive.blog" class="external_link">对比一下ecdsa与secp256k1-py从私钥生成公钥 <li><a href="https://steemit.com/python/@oflyhigh/ecdsa-signingkey-verifyingkey" target="_blank" rel="noreferrer noopener" title="This link will take you away from hive.blog" class="external_link">ecdsa学习笔记 / SigningKey、VerifyingKey以及公钥
Sort:  

ok man that's some serious stuff right there ... whatever it may be!

Nice post

interesting post and information..
I got insight and knowledge

Thanks for information upvte and resteem

Really very nice post thanks for sharing...

good post thanks for the info

Honestly I don't understand the write ups, but I feel this post is very informative

虽然不是非常明白,但感觉好厉害的样子

学习了